Autodesk Inventor

Engineer s Handbook

هندبوک مهندسی نرم افزار Autodesk Inventor

انجمن اینونتور ایران www.irinventor.com

Email: irinventor@chmail.ir

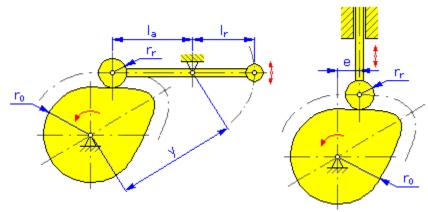
irinventor@hotmail.com

Tel: 09352191813 &

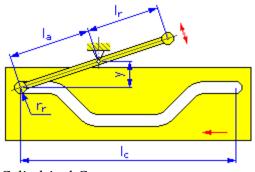
021-46088862

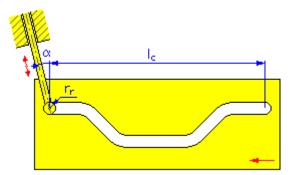
Transmission Mechanism

Cam Generator

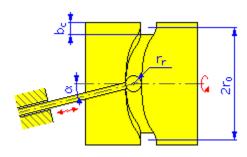

[قابل توجه خوانندگان عزیر: کلیه مطالب این هندبوک از سایت شرکت Autodesk کپی برداری شده است.]

Calculation Equations


Input data:


- Basic Radius r₀ (Disc and Cylindrical Cams)
- Motion Length I_c (Linear Cams)
- Cam Width b_c
- Roller Radius r_r
- Roller Width b_r (for Follower Shape Cylinder)
- Eccentricity e (Disc Cams for Translating Follower)
- Eccentricity angle α (Linear and Cylindrical Cams for Translating Follower)
- Pivot Distance y (Disc and Linear Cams for Swinging Arm)
- Arm Length I_a (Disc and Linear Cams for Swinging Arm)
- Reaction Arm I_r (Disc and Linear Cams for Swinging Arm)
- Speed ω (Disc and Cylindrical Cams)
- Velocity v (Linear Cams)
- Force on Roller F
- Accelerated Weight m
- Spring Rating c
- Allowable Pressure p_{A1}
- Modulus of Elasticity of Cam Material E₁
- Poisson's Ratio of Cam Material μ₁
- Allowable Pressure p_{A2}
- Modulus of Elasticity of Follower Material E 2
- Poisson's Ratio of Follower Material μ₂

Disc Cam



Linear Cam

Cylindrical Cam

Outside diameter = $2r_0 + b_c$ Inside diameter = $2r_0 - b_c$

Cam Segments

- Motion Function f_y (z) [ul]
- Reverse Ratio k_r (only for motion Parabolic and Parabolic with linear part)
- Linear Part k₁ (only for motion Parabolic with linear part)
- Motion Start Position I₀[°; mm, in]
- Motion End Position I [°; mm, in]
- Segment Motion Length dl = I I₀ [°; mm, in]
- Lift at Start ho[mm, in]
- Lift at End h max [mm, in]
- Segment Lift $d_h = h_{max} h_0 [mm, in]$

Lift dependencies

Disc and Cylindrical Cam

Cam rotation angle ϕ_i [°]

Actual relative position in segment: $z_i = (\phi_i - l_0) / dl$ (range 0 - 1)

Lift $y_i = dh f_y(z)$ [mm, in]

$$v_i = \frac{dh}{1000} \cdot \frac{360 \,\omega}{dl} \cdot f_v(z) \, [\text{m/s}]$$

$$v_i = \frac{dh}{12} \cdot \frac{360 \,\omega}{dl} \cdot f_v(z) \text{ [ft/s]}$$

Acceleration
$$a_i = \frac{dh}{1000} \cdot \left(\frac{360\,\omega}{d\,l}\right)^2 f_a(z) \ [\,\text{m/s}^2\,]$$

$$a_i = \frac{dh}{12} \cdot \left(\frac{360 \,\omega}{dI}\right)^2 f_a(z) \, [ft/s^2]$$

Pulse

$$j_i = \frac{dh}{1000} \cdot \left(\frac{360 \, \omega}{dI}\right)^3 f_j(z) \, [\text{m/s}^3]$$

$$j_i = \frac{dh}{12} \cdot \left(\frac{360 \, \omega}{dI}\right)^3 f_j(z) \text{ [ft/s³]}$$

Linear Cam

Cam motion position l_i [mm, in]

Actual relative position in segment: $z_i = (l_i - l_0) / dl$ (range 0 - 1)

Lift
$$y_i = dh f_y(z) [mm, in]$$

Speed

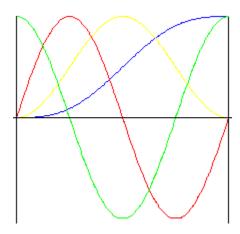
$$V_i = dh \cdot \frac{V}{dl} \cdot f_v(z) \text{ [m/s, ft/s]}$$

Acceleration

$$a_i = 1000 \cdot dh \cdot \left(\frac{V}{dl}\right)^2 f_a(Z) [m/s^2]$$

$$a_i = 12 \cdot dh \cdot \left(\frac{V}{dI}\right)^2 f_a(z) [ft/s^2]$$

Pulse


$$j_i = 10^6 \cdot dh \cdot \left(\frac{V}{dl}\right)^3 f_j(z) [m/s^3]$$

$$j_i = 12^2 \cdot dh \cdot \left(\frac{V}{dl}\right)^3 f_j(z) \text{ [ft/s}^3\text{]}$$

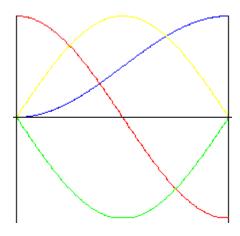
Motion functions

Cycloidal (extended sinusoidal)

This motion has excellent acceleration characteristics. It is used often for high-speed cams because it results in low levels of noise, vibration, and wear.

Lift

Speed


Acceleration

Pulse

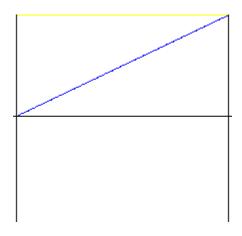
Lift
$$f_y(z) = z - 0.5/\pi \sin(2\pi z)$$
 Speed
$$f_v(z) = 1 - \cos(2\pi z)$$
 Acceleration $f_a(z) = 2\pi \sin(2\pi z)$ Pulse
$$f_i(z) = 4\pi^2 \cos(2\pi z)$$

Harmonic (sinusoidal)

Smoothness in velocity and acceleration during the stroke is the advantage inherent in this curve. However, the instantaneous changes in acceleration at the beginning and end of the motion tend to cause vibration, noise and wear.

Lift

Speed


Acceleration

Pulse

$$\begin{array}{ll} Lift & f_y\left(z\right) = 0.5 \; (1 - \cos \pi z)) \\ Speed & f_v\left(z\right) = 0.5 \; \pi \sin \left(\pi z\right) \\ Acceleration f_a\left(z\right) = 0.5 \; \pi^2 \cos(\pi z) \\ Pulse & f_j\left(z\right) = -0.5 \pi^3 \sin(\pi z) \end{array}$$

Linear

Simple motion with huge shock at start and at end of motion. Rarely used except in very crude devices. We recommend that you use motion with modified start and end of motion – Parabolic with linear part.

Lift

Speed

Lift

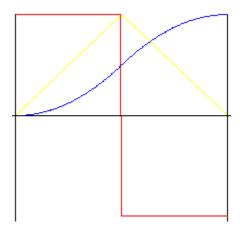
 $f_y(z) = z$

Speed $f_v(z) = 1$

Acceleration $f_a(z) = 0$

NoteFor z = 0 and z = 1 the proper value should be an infinite value, but the calculation cannot work with an infinite value and uses a zero value.

Pulse


$$f_{i}(z) = 0$$

NoteFor z = 0 and z = 1 the proper value should be an infinite value but the calculation cannot work with an infinite value and uses a zero value.

Parabolic (Polynomial of 2 nd degree)

Motion with smallest possible acceleration. However, because of the sudden changes in acceleration at the start, middle, and end of the motion, shocks are produced. Revese ratio allows "stretch" of middle of motion to allow change in acceleration and deceleration ratio.

symmetrical (reverse ratio $k_r = 0.5$)

Speed

Acceleration

for z = 0 to 0.5:

 $fy(z) = 2z^2$ Lift

fv(z) = 4zSpeed

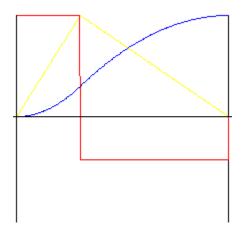
Acceleration fa (z) = 4

fa(z) = 0Pulse

for z = 0.5 - 1:

 $fy(z) = 1 - 2(1 - z)^2$ Lift

fv(z) = 4(1 - z)Speed


Acceleration fa (z) = -4

Pulse fj(z) = 0

> NoteFor z = 0 and z = 1 the proper value should be an infinite value but the calculation cannot work with an infinite value and uses a zero value.

nonsymmetrical

 k_r - reverse ratio (in range 0.01 to 0.99)

Speed

Acceleration

for z = 0 to k_r :

Lift
$$f_v(z) = z^2/k_r$$

Speed
$$f_v(z) = 2z / k_r$$

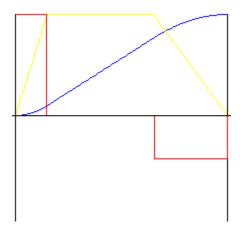
Acceleration $f_a(z) = 2 / k_r$

Pulse
$$f_j(z) = 0$$

for $z = k_r$ to 1:

Lift
$$f_y(z) = 1 - (1-z)^2/(1-k_r)$$

Speed
$$f_v(z) = 2(1-z)/(1-k_r)$$


Acceleration $f_a(z) = -2/(1 - k_r)$

Pulse
$$f_j(z) = 0$$

NoteFor z = 0 and z = 1 the proper value should be an infinite value but the calculation cannot work with an infinite value and uses a zero value.

Parabolic with linear part

Provide more acceptable acceleration and deceleration than linear motion. Revese ratio allows "stretch" of middle of motion to allow change in acceleration and deceleration ratio. Linear part ratio allows set relative size of linear motion part.

Speed

Acceleration

Pulse

k_r- reverse ratio (in range 0.01 to 0.99)

k₁- linear part ratio (in range 0 to 0.99)

$$k_z = 1 + k_1/(1 - k_1)$$

$$k_h = (1 - k_1) / (1 + k_1)$$

for z = 0 to k_r/k_z :

Lift
$$f_{y}(z) = k_{h} z^{2} k_{z}^{2} / k_{r}$$

Speed
$$f_v(z) = 2 k_h z k_z^2 / k_r$$

Acceleration $f_a(z) = 2 k_h k_z^2 / k_r$

Pulse
$$f_j(z) = 0$$

for
$$z = k_r / k_z$$
 to $r / k_z + k_1$:

Lift
$$f_y(z) = (z - 0.5 k_r/k_z) 2/(1 + k_1)$$

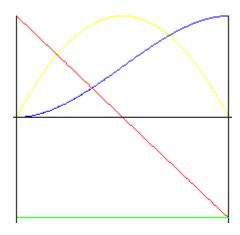
Speed
$$f_v(z) = 2/(1 + k_1)$$

Acceleration $f_a(z) = 0$

Pulse
$$f_j(z) = 0$$

for
$$z = k_r / k_z + k_1 to 1$$
:

Lift
$$f_y(z) = 1 - k_h (1 - z)^2 k_z^2 / (1 - k_r)$$


Speed
$$f_v(z) = 2 k_h (1 - z) k_z^2 / (1 - k_r)$$

Acceleration
$$f_a(z) = -2 k_h k_z^2 / (1 - k_r)$$

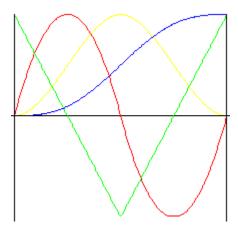
Pulse
$$f_i(z) = 0$$

Polynomial of 3 rd *degree (cubic parabola)*

Motion with smaller shocks than parabolic motion.

Lift

Speed


Acceleration

Pulse

Lift
$$f_y(z) = (3 - 2z) z^2$$

Speed $f_v(z) = (6 - 6z) z$
Acceleration $f_a(z) = 6 - 12z$
Pulse $f_i(z) = -12$

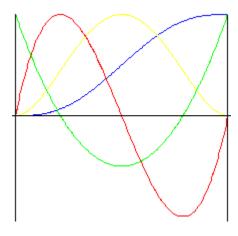
Polynomial of 4 $^{\rm th}$ degree

Motion with smaller shocks than Polynomial of 3 $^{\rm rd}$ degree motion.

Speed

Acceleration

Pulse


$$\begin{split} &\text{for } z = 0 \text{ - } 0.5 \\ &\text{Lift} & f_y(z) = (1 \text{ - } z) \text{ } 8z^3 \\ &\text{Speed} & f_v(z) = (24 \text{ - } 32z) \text{ } z^2 \\ &\text{Accelerationf }_a(z) = (48 \text{ - } 96z) \text{ } z \\ &\text{Pulse} & f_j(z) = 48 \text{ - } 192z \\ &\text{for } z = 0.5 \text{ - } 1 \\ &\text{Lift} & f_y(z) = 1 \text{ - } 8z \text{ } (1 \text{ - } z)^3 \\ &\text{Speed} & f_v(z) = (32z \text{ - } 8) \text{ } (1 \text{ - } z)^2 \\ &\text{Accelerationf }_a(z) = (48 \text{ - } 96z) \text{ } (1 \text{ - } z) \end{split}$$

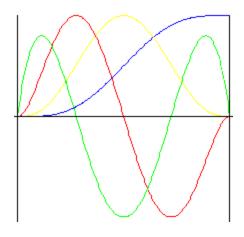
 $f_i(z) = 194z - 144$

Polynomial of 5 th degree

Pulse

Motion with smaller shocks than Polynomial of 3 rd degree motion.

Speed


Acceleration

Pulse

Lift $f_y(z) = (6z^2 - 15z + 10) z^3$ Speed $f_v(z) = (z^2 - 2z + 1) 30z^2$ Acceleration $f_a(z) = (2z^2 - 3z + 1) 60z$ Pulse $f_j(z) = (6z^2 - 6z + 1) 60$

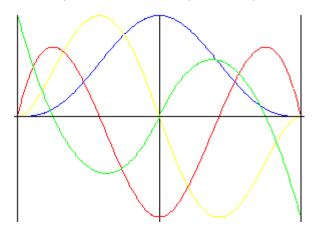
Polynomial of 7 th degree

Smoothness in all formulas including pulse.

Lift

Speed

Acceleration


Pulse

Lift
$$f_y(z) = (-20z^3 + 70z^2 - 84z + 35) z^4$$

Speed $f_v(z) = (-z^3 + 3z^2 - 3z + 1) 140z^3$
Acceleration $f_a(z) = (-2z^3 + 5z^2 - 4z + 1) 420z^2$
Pulse $f_j(z) = (-5z^3 + 10z^2 - 6z + 1) 840z$

Nonsymmetric Polynomial of 5 th degree

Similar like Polynomial of 5th degree but with forced lift reversion.

NoteRequire combination of part 1 and part 2.

Lift

Speed

Acceleration

Pulse

Part 1

Lift
$$f_v(z) = 1 - (8(1-z)^3 - 15(1-z)^2 + 10)(1-z)^2/3$$

Speed
$$f_v(z) = (2(1-z)^3 - 3(1-z)^2 + 1)(1-z)20/3$$

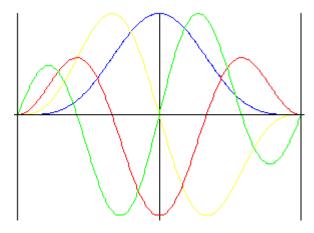
Acceleration
$$f_a(z) = -(8(1-z)^3 - 9(1-z)^2 + 1)20/3$$

Pulse
$$f_i(z) = (4(1-z)^2 - 3(1-z)) 40$$

Part 2

Lift
$$f_v(z) = (8z^3 - 15z^2 + 10) z^2 / 3$$

Speed
$$f_v(z) = (2z^3 - 3z^2 + 1) z 20/3$$


Acceleration
$$f_a(z) = (8z^3 - 9z^2 + 1) 20/3$$

Pulse
$$f_i(z) = (4z^2 - 3z) 40$$

Double Harmonic

Smoothness in all formulas including pulse with forced lift reversion..

NoteRequire combination of part 1 and part 2.

Part 1

Lift
$$f_y(z) = \cos(0.5\pi (1 - z))^4$$

Speed
$$f_v(z) = \pi (0.5 \sin(\pi z) - 0.25 \sin(2\pi z))$$

Acceleration
$$f_a(z) = 0.5 \pi^2 (\cos(\pi z) - \cos(2\pi z))$$

Pulse
$$f_1(z) = \pi^3 (-0.5 \sin(\pi z) + \sin(2\pi z))$$

Part 2

Lift
$$f_{y}(z) = 1 - \cos(0.5\pi z)^{4}$$

Speed
$$f_v(z) = \pi (0.5 \sin(\pi z) + 0.25 \sin(2\pi z))$$

Acceleration
$$f_a(z) = 0.5 \pi^2 (\cos(\pi z) + \cos(2\pi z))$$

انجمن اینونتور ایران/ هندبوک مهندسی نرم افزار AUTODESK INVENTOR

Pulse
$$f_1(z) = -\pi^3 (0.5 \sin(\pi z) + \sin(2\pi z))$$

Comparison of maximal relative values

Motion	SpeedAccelerationPulse		
Cycloidal (extended sinusoidal)	2	6.28	39.5
Harmonic (sinusoidal)	1.57	4.93	15.5
Linear	1		
		∞	∞
Parabolic (Polynomial of 2 nd degree)	2	4	
			∞
Polynomial of 3 rd degree	1.5	6	12
Polynomial of 4 th degree	2	6	48
Polynomial of 5 th degree	1.88	5.77	60
Polynomial of 7 th degree	2.19	7.51	52.5
Nonsymmetric Polynomial of 5 th degree	e1.73	6.67	40
Double Harmonic	2.04	9.87	42.4

Other dependencies

Force on roller

$$F_i = F + m a_i + c y_i [N, lb]$$

Normal Force

$$Fn_i = F_i / cos(\gamma_i)[N, lb]$$

Moment

$$T_i = F_i r_i \tan (\gamma_i)$$
 [Nmm, lb in]

Specific (Hertz) Pressure

$$p_{i} = \sqrt{\frac{\frac{Fn_{i}}{\pi b} \left(\frac{1}{r_{k}} - \frac{1}{r_{ci}}\right)}{\frac{1 - v_{1}^{2}}{E_{1}} + \frac{1 - v_{2}^{2}}{E_{2}}}} \quad [MPa, psi]$$

انجمن اینونتور ایران/ هندبوک مهندسی نرم افزار AUTODESK INVENTOR

 $b = \min(b_{v}, b_{k})$

Web: www.irinventor.ir
Email: irinventor@chmail.ir
& irinventor@hotmail.com

Tel: 09352191813 & 021-46088862

